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Abstract

The traditional Anti-Virus paradigm focuses on signature-based and
behavioral detection. These require substantial processing, which hurts
the limited power resources of handsets. Also, carriers are reluctant and
slow to deliver Firmware Over The Air (FOTA) patches, due to the rigor-
ous testing they need to subject updates to, and the costs of over-the-air
updates. A move to cloud-based screening fails to recognize that not all
threats will be propagated over the backbone, may obfuscate themselves
in transit; or fight back (as rootkits do) to evade reporting or use of tech-
niques such as the “Google kill switch”. Hardware vendors are evaluating
security solutions with hardware support, such as TrustZone, but while
this reduces the vulnerabilities, it still exposes an attack surface.

We describe a new approach that detects the presence of any unde-
sirable routines – including corruptions of the code used to perform this
detection. The security assertions we make are not based on heuristics,
but rather, rely on the physical characteristics of the target device. We
detail the approach, which does not rely on hardware modifications, and
explain how to analyze its security.
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1 Introduction

Current Anti-Virus (AV) software works in a similar way to how TSA personnel
screen air travelers as they enter the airport – based on their identification
documents, belongings and behavior. This is a labor-intensive approach that
needs constant updates of blacklists, and for which a single security breach can
result in a complete loss of control and irrevocable damage. While this approach
may be sufficient to secure air travelers, it is becoming increasingly unsuitable
to protect against malware. One reason for this is the constant evolution of
malware, resulting in the declining benefit of signatures and behavioral models.
A second reason is the spiraling cost of deploying these defenses; a third is the
cost of patching; and yet another one is the burden of constant screening on
devices with limited power resources.



In this paper, we describe an approach that detects any active malware,
including zero-day attacks, simply based on the fact that all active routines take
up space in the cache – whether in the form of code or an entry in the interrupt
table. The approach does not rely on patching, and benefits from moving the
attack surface off of the target device and onto a web server responsible for
performing security assessments of the target device. This transfer of control
improves security, since attentive organizations are better at managing their
security than individuals are. It also aligns liability with control, as it allows
relying parties to determine the security posture of consumer (and employee)
devices, instead of having to blindly trust that the device owner makes prudent
security decisions.

The basic underlying principle behind the approach we describe is to run
a micro-kernel with full OS privileges, where the micro-kernel freezes all active
routines and empties the cache, disables interrupts, and performs a computation
that is configured to require all of the cache (except the space known to be used
by the microkernel) in order to run quickly. The result of the computation is
a checksum. If malware resists being disabled, thereby remaining at least in
part in the cache in spite of the intentions to evacuate it to RAM or secondary
storage, then the available space will be less than what was expected, and
either the checksum result will be incorrect or the computation of it will take
much longer than for a clean device. The algorithm used in the computation
is designed in a manner that makes the time-space tradeoff extreme – thereby
making any reduction of the available space cause a dramatic increase of the
execution time. This delay is clearly distinguishable from deterministic but
uncontrollable “hardware noise”, such as the state of the hardware bus controller
at the start of the scan, timer aliasing, and aliasing caused by different clock
domains. Based on case analysis of the various ways that malware can stay in
the cache, one can prove the minimum increase of time as a function of physical
device properties – such as the number of processors; the processor speed(s);
the bus speed; etc. The time of execution is measured at a location that is not
exposed to malware – a good practical location for handsets, for example, is in
the modem processor, which has a substantially smaller attack surface than the
operating system does.

The checksum value and the time it took to compute this are then verified
by an external entity in charge of performing the security assessment of the
device. We call this the external verifier. Apart from verifying the results, the
external verifier also generates the random challenge used as an input to the
algorithm computing the checksum. The external verifier executes in a secure
(trusted) location. Deterministic network latency improves the efficiency of the
attestation process, so locating the external verifier close to the target is desir-
able. The external verifier can utilize a proxy executing on-board the device,
provided that the proxy is running in a secure module on the device (such as
the modem processor, as mentioned above, or a SIM card). The proxy pro-
vides device identity, cryptographic services, and secure high-resolution timing.
Throughout this paper we refer to the remote off-board external verifier and its
local on-board proxy as simply “the external verifier.”
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For maximum security, the type of scans we describe are performed both in
a scheduled manner (such as at 2am every night) and after they are triggered by
events (such as accesses to internal or external resources, or after an application
calls an API to initiate the scan). The scheduled scans are intended to limit the
spread of malware using devices whose usage does not necessarily trigger scans
by themselves, whereas the triggered scans are used to guard access to sensitive
resources. Example internal resources include a credential storage used by a
password manager, a key ring, and a decryption key for a file whose access is
controlled by digital rights management software. Example external resources
include a user account managed by a financial institution and a corporate net-
work. In general, after a successful scan completes, a security sensitive task
is performed. Depending on the context and the calling application, this may
involve loading, verifying and activating a small set of routines; performing a
trustworthy device backup to a server; and scanning secondary storage for un-
desirable software and data. Two examples of undesirable software are routines
that, while not active malware, are either known to be harmful (such as a typical
trojan), or not allowed under some terms of service.

We note that our solution does not prevent infection, but only detects it.
Therefore, it is not intended to replace traditional AV technology, but rather, to
complement it. One obvious use of traditional AV software is to limit infections
in the first place; another is to search the secondary storage for passive malware
after it has been determined that there is no active malware. On the other
hand, since traditional AV technology only prevents a portion of attacks, our
technology is needed to detect when it fails.

Our technology is also not intended to replace hardware solutions such as
TrustZone. TrustZone can be thought of as a very powerful sandboxing tech-
nique, but is known to have a considerable attack surface. (Indeed, one of the
companies working with us has requested that our technology be used to verify
the security posture of TrustZone.)

2 The Problems with Conventional Methods

To understand why conventional methods are increasingly less helpful to defend
against the threat of malware, it is important to understand how they work,
what infrastructure they require, and how malware authors counter them. This
section aims at providing a brief review of these issues.

Deployment. Conventional anti-virus methods are based on heuristics and
blacklisting – whether of code or behaviors of code. Signature-based detection
screens for code patterns associated with known offending code, and behavioral
detection looks at unusual access patterns known to be used by undesirable
routines. By their very nature, these defense methods require constant updating,
starting with the gathering of intelligence and generation of descriptors, followed
by testing that these descriptors do not generate false positives, and the eventual
deployment of the descriptors. Based on the amount of testing that has to be
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done, the cycle – from initial identification of a threat to deployment of patches
– takes anywhere from on the order of a day (for consumer-deployments to
PCs) to something on the order of a month (the latter typically for corporate
platforms, where the testing is much more intense), or more. The worst case
is for Firmware Over The Air (FOTA) patches to mobile devices: In addition
to being slow, they are also very costly. In contrast, the methods we describe
are not based on heuristics or matching to known unwanted code, which avoids
the need for patching in order to detect active threats. (Threats that are not
active, such as typical trojans, are treated separately, after screening for active
threats.)

Traditionally, the use of patches involves the communication of these to
client devices, where these perform near-constant scanning of processes. To
an increasing extent, this screening is instead performed using cloud services
supported by thin clients on the user end, which makes patch deployment a bit
easier. Independently of the deployment approach, however, malware authors
use the detection systems as oracles to determine when new versions of their
code are sufficiently different from older version. When the malware that is
being tested is detected, the malware author simply creates a new version (an
effort that can be automated) and tests again. This turns traditional AV systems
into tools to evade detection. The ease with which this can be done is part of
the reason for the ever increasing rate of malware evolution. The method we
describe does not offer malware authors the opportunity to turn the defense
system into a method to customize their threat, nor is it vulnerable to zero-day
attacks.

On mobile platforms, the burden of deployment of patches is greater than
for regular computer platforms. There are several reasons for this. One is
that the testing of patches commonly is much more involved; another is the
added network cost of patching over the air; and yet another is the fact that
downloading large updates is burdensome to mobile devices with their limited
bandwidth and battery resources. As mentioned, the approach we advocate is
not based on patching – instead, it is pre-loaded at device deployment time, and
requires no maintenance after that.

Scanning. Conventional anti-virus methods are based on near-constant screen-
ing of processes in order to keep malware off of protected devices. The ongoing
processing translates to a burden on computational and power resources. In
contrast, the methods we describe perform on-demand detection of the security
posture of a device, which reduces the impact of device resources. Moreover,
they allow an alignment of control and liability, by making it possible for a
server associated with a relying party to assert that a given device is free from
malware before service is provided to the device.

Another common traditional approach is to monitor or filter network commu-
nications on the backend, whether to block or detect corruptions. An example
of the former is screening of email attachments by ISPs and carriers; an example
of the latter is detection of requests indicative of the requesting device being
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infected – such as requests to known command and control centers. Whereas
both of these techniques are great complements to other security measures,
they share many of the drawbacks of signature-based and behavioral techniques
(such as being based on knowing the exact nature of the problem); and also,
do not address attacks that do not use the regular backbone for infection and
configuration.

In the context of conventional anti-virus methods, offending or unwanted
code is typically limited to malware. Traditional methods are often unable to
detect other potentially unwanted code, such as code associated with jailbreak-
ing, or more generally, code that breaks terms of service. However, the method
that is the focus of this paper detects any active code – independently of how it
was installed, and independently of whether it affects the client-side detection
code. In particular, we assume our client side code to be potentially corrupted.
In the context of the traditional detection methods, this is counter-intuitive to
most, but possible to achieve by a complete shift of the underlying detection
paradigm.

3 Technical Approach

Our approach is a form of software based attestation [2, 3, 4, 5, 6, 7, 8, 10, 11,
12], meaning that it uses software to determine whether any other software is
running on a device. The last few years have seen an abundance of proposals
of how to perform software based attestation; these proposals differ in terms
of the underlying technical approach, the protected platform and the execution
time1. There are two principal technical approaches – code that only does
self-introspection (e.g., [5, 7]) and code that also writes to larger portions of
memory (e.g., [1, 3].) Our approach is of the latter type, as we believe that this
dramatically simplifies the design, which in turn makes it easier to prove the
security properties of the algorithm. In terms of platforms differences, there are
designs for smart cards [1], embedded systems [5], cars [9] legacy systems [7]
and mobile devices [3]. These differ quite dramatically from each other in terms
of technical principles and assumptions on the systems. Most of the methods
can only be used for the platform they were designed, as they rely on particular
platform features. Our method is applicable to any computational device with
a unified cache, although our primary focus is attestation of mobile devices.
The execution time for our approach is below 1.5 milliseconds for a typical
smartphone sold in 2013.

The security of our solution rests on several important assumptions:

Assumption 1: Secure device communication. We assume that the ex-
ternal verifier (or its proxy) has some way of ascertaining that the device to be

1It is more meaningful to speak of execution time than computational overhead, since
software based attestation techniques are only run before a security-sensitive boundary is
entered, as opposed to all the time.
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audited is in fact the device it interacts with. We also assume that the external
verifier can send data securely to the audited device, e.g., in a way that cannot
be eavesdropped or tampered. Both of these aspects correspond to devices being
associated with unique keys that cannot be extracted by application processes2.

Mobile devices have such keys (used for billing purposes), accessible by their
modem processors; as do Intel processors, as part of their Identity Protection
Technology.

Assumption 2: Code optimality. We assume that the checksumming al-
gorithm used in the scan is written in a near-optimal manner in terms of its
footprint and execution speed, and that any modications of the algorithm would
make it notably slower to execute.

For general software, code optimality is not a meaningful assumption to
make; however, given the simplicity of our scan algorithm, it is quite realis-
tic. In particular, the inner loop of our checksumming algorithm is only eight
instructions long – such as short routine can be manually verified to be optimal.

Assumption 3: Deterministic hardware. We assume that the hardware
will present largely the same performance characteristics each time the attesta-
tion is executed.

We note that the attestation process can tolerate a high noise threshold, such
as background DMA processes utilizing a shared SoC bus, but the quantity of
the noise must be possible to bound a priori.

Given these assumptions, we are now ready to describe the scan algorithm
we use, starting with a definition:

Definition: Free cache. Our malware detection algorithm is implemented
as a kernel/algorithm monolith that is stored in the instruction cache (where
it fits in its entirety). It has an associated working space that is located in the
data cache (and registers.) All other cache space is referred to as free cache –
whether it actually is free or not.

Since all legitimate routines will agree to be terminated, it is only active
malware that will reside in free cache. At a high level, our routine simply
determines whether all of free cache is indeed free. This is done by running an
algorithm that requires all of the free cache space in order to execute quickly –
and to measure the time this algorithm takes to run using a timer that cannot
be corrupted by malware.

2We do not address hardware trojans or other attacks in which an attacker uses physical
access to components to corrupt the hardware of a device.
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What is done: The malware detection algorithm involves the following steps
on the client machine:

1. Setup: Flush out the contents of free cache to RAM, disable interrupts,
pause all processing for the duration of the attestation process, and per-
form a setup for the checksumming.

2. Cache fill: Receive a cryptographic seed from the external verifier, and
overwrite free cache with the output of a pseudo-random function using
this seed. (The external verifier may reside on the network and use a local
proxy in the baseband station, performing timing.)

3. Checksumming: Receive a cryptographic key from the external verifier,
compute a keyed nonlinear checksum of the entire memory contents, and
report the resulting value to the external verifier.

4. Verification: The external verier compares the received value to a check-
sum it computes locally on the expected contents of the device. It also
compares the time the device computation took to an expected value. If
either comparison fails, then this is indicative of the device being infected;
otherwise, it is free from active malware.

5. Transact: Perform a security-sensitive action (such as establish SSL
connection, scan RAM and flash for inactive malware, etc). The exter-
nal verifier controls whether the action is allowed or not, e.g., by send-
ing/withholding decryption keys used to access sensitive data on the de-
vice.

Why it is done: Step 1 attempts to establish an isolated execution environ-
ment. If successful, this step ensures no other software will execute, no cache
evictions will take place and the attestation scan will complete in optimal time.
The subsequent attestation process verifies the integrity of this isolated execu-
tion environment in order to establish a Secure eXecution Environment (SXE).

In step 2, free cache is filled with a pseudorandom string that depends on
keys obtained from the external verifier in step 1.

In step 3, the cryptographic checksum is computed from the contents of
the cache – the pseudo-random string and the correct (good) scanning code.
Attempts by malware to use contents that are not in the cache (in order to hide
itself in the cache) will result in dramatically increased computation time. (This
is described in greater detail in the next section.)

In step 4, the external verifier is given assurance that steps 1 through 3
were performed correctly, based on the checksum value and the time it took
to compute it. One can utilize various techniques to avoid issues with latency
variance.

In step 5, after the verifier asserts the integrity of the isolated execution
environment, it releases keys or tickets used to access the security sensitive re-
source. A loader loads a payload and verifies that its digest is correct, based on
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a digest that is part of the micro-kernel (and which is therefore already verified
for validity, using the checksum.) The payload consists of a whitelisted appli-
cation (whitelet) with optional data. Sensitive data contained in the payload is
protected, and access to the data requires one or more security keys, provided
by the external verifier (but only after a successful scan.) These keys are deleted
after they are used. The whitelet executes entirely in the context of the SXE
with assurance of confidentiality and integrity.

The attestation process can be run during boot time to create a static root
of trust (an OS secure boot), or at any time during normal system operation
to create a dynamic (temporary) root of trust. A dynamic root of trust allows
a whitelet to execute in a secure environment even when the host operating
system is infected.

4 Adversarial Strategies

The detection mechanism described above evicts all cache contents (except for
what constitutes the detection mechanism itself); fills the free space with non-
compressible data; and then computes a keyed checksum of the entire cache
contents (including the detection code itself.) If the scan indicates the absence
of active malware, then a loader will be run, which loads and verifies a collection
of processes to be executed, allowing only those matching the stored message
digest to start. These processes will be granted access (by the external verifier)
to the resources they need to run. Encrypted internal resources are unlocked
by communicating the appropriate key; external resources are unlocked either
using keys or traditional tickets.

Passive malware (i.e., malware that does not interfere with the scanners
control of hardware resources) will not be able to interfere with the processes
to be run after the detection mechanism is run, since passive will be evicted
by the detection mechanism and the detection mechanism turns off interrupts.
Moreover, the contents of the interrupt table will not be restored until after
the all security sensitive tasks have completed, and so, passive malware will
be disabled for the entire duration of the security sensitive task. (If this task
involves scanning RAM and secondary storage for undesirable code and data,
or synchronize the contents of the device with a cloud server that performs such
as scan, then the undesirable processes can be killed and removed while being
evicted.)

Active malware, on the other hand, will fight back. It may interfere with the
task of the detection mechanism. We make the very pessimistic assumption that
the active malware may have corrupted the detection code, which is assumed
to be known in full detail by the malware author. Based on this assumption,
we will describe an array of adversarial approaches, and briefly argue why each
one will fail.

• Silent attack. The adversary causes the corrupted device to not com-
municate with the external verifier. This is not a helpful strategy, though,
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since the external verifier will not grant access to the sensitive resources
without first running the detection algorithm. If a scheduled scan is missed
(which could happen for legitimate reasons), the external verifier will flag
the device, demanding a scan to be performed when the device shows up
on the network next.

• Naive corrupted code attack. The adversary modifies or augments the
detection code (or its associated data) to perform a different task than
what is desirable – for example, to permit a corrupted process (whose
digest will not be correct) to be loaded and run. In the naive corrupted
code attack, the adversary does not attempt to hide the modifications.
Therefore, as the external verifier compares the checksum of the cache
contents to the checksum it computes, the modification will be apparent,
except with a negligible probability.

• Advanced corrupted code attack. The adversary modifies or aug-
ments the detection code (or its associated data) to perform a different
task than what is desirable, and to hide this fact to the checksumming
function. For example, the code modification can displace (e.g., to RAM)
some of the non-compressible data that is generated by the detection mech-
anism. When the checksum operation is performed, cache misses will bring
in these values to the cache. However, based on the order in which the
checksum operation accesses the cache, each such access will result in a
cache miss, the aggregation of which will correspond to a measurable delay.
(A version of this attack generates the non-compressible data on demand,
when needed by the checksumming code. Due to the manner in which the
non-compressible data is generated and stored, though, this will result in
an even more substantial delay.) The delay, no matter what caused it, is
evidence of an active attack.

• Evil twin attack. In the evil twin attack, a virgin version of the de-
tection code is kept in the cache, but is not executed. Instead, a corrupt
routine is run. The corrupt routine is potentially limiting its footprint by
making calls in to the virgin code using Return Oriented Programming
(ROP) techniques. The corrupt code must take up some space, and must
displace either code or the non-compressible data that is needed for the
computation of the checksum. According to the same argument as above,
this will be detected.

• Evil interrupt attack. The evil interrupt attack works like this: The
adversary replaces the virgin detection code with a version that (1) leaves
the interrupts enabled (whereas the virgin code disables them), and (2)
rewrites itself to the virgin code after the execution has passed the location
where the interrupts normally would have been turned off. This results
the correct checksum being computed, but without the interrupts being
turned off. An interrupt is then triggered after the (correct) checksum has
been computed. The associated routine performs a malicious task, such
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as rewriting the loader. This attack fails since the code loaded by the
interrupt will be stored in cache and will therefore displace other data;
which will be detected as above. There are many alternative ways to
address this problem, although these are beyond the scope of this paper.

• Evil processor attack. A processor that is not used by the detection
mechanism is controlled by the adversary, and is used to perform a mali-
cious task after the correct checksum has been computed. To avoid causing
a displacement of data from the cache, the code running on this processor
may be flagged as non-cacheable, and therefore, run directly from RAM;
while this will cause the execution to be slow, that will only affect the
execution speed of the corrupted processor. The simplest way to avoid
this attack is to let the detection mechanism make use of all processors
that are potentially reachable by malware.

The list of potential attacks provided above is not exhaustive; instead, it is il-
lustrative of our approach. While the countermeasures we describe are sufficient
to address the above attacks, the system we describe incorporates additional
countermeasures. These are beyond the scope of this paper.
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