
SpoofKiller:
You can teach people how to pay, but not how to pay attention.

Markus Jakobsson
PayPal

Hossein Siadati
Semnan University

Abstract

We describe a novel approach to reduce the impact of
spoofing by a subtle change in the login process. At the
heart of our contribution is the understanding that current
anti-spoof technologies fail largely as a result of the diffi-
culties to communicate security and risk to typical users.
Accordingly, our solution is oblivious to whether the user
was tricked by a fraudster or not. We achieve that by
modifying the user login process, and letting the browser
or operating system cause different results of user login
requests, based on whether the site is trusted or not. Ex-
perimental results indicate that our new approach, which
we dub “SpoofKiller”, will address approximately 80%
of spoofing attempts. Free licenses to the technology are
offered by the organization owning it, and serious discus-
sions with a major OS vendor have been initiated, with
the goal of protecting payments made from apps running
on their platform.

1 Introduction

As people interact with each other, they observe cues that
indicate the identity of the party they interact with. This
is a form of authentication that is implicitly taking place.
It is not limited to human-to-human interaction, but peo-
ple also implicitly form opinions about the identity and
validity of websites, as they observe these. Given human
inaccuracy, this is a very vulnerable form of authentica-
tion, and one that makes spoofing possible.

Just as fraudsters may attempt to impersonate a trusted
person to an intended victim, they may also spoof emails,
websites and apps. This is a common technique used
by phishers. Phishers use webpage spoofing to dupe In-
ternet users into believing that they are visiting trusted
websites, and giving out their passwords (or other cre-
dentials) to these sites.

At the risk of stating the obvious, phishers are only
successful if (a) they manage to trick their intended vic-
tims, and (b) the resulting actions of these victims are
beneficial to the fraudsters. Both conditions are neces-
sary.

Typical security measures aim to mitigate the threat of
spoofing by addressing the first condition, i.e., by avoid-
ing that intended victims are tricked. This is done by
conveying security and risk to users – e.g., using locks
and conveying recognizable URLs to represent security,
and by issuing warnings and requiring unusual user ac-
tion to represent risk. This general approach is not very
effective, as it relies on users paying close attention to
subtle cues and to not act out of habit. The simple but
somewhat ironic beauty of the approach we introduce is
that it turns reflexive user behavior from being a danger
(as it is today) to being a distinct advantage. When users
are habituated to the methods we promote, the very same
reactions that currently make these users fail to notice
and act on indications of risk are harnessed and made to
protect them. The approach we take to achieve this goal
relies on undermining the second condition for success
for phishers, namely that the resulting actions of victims
are beneficial to the fraudsters.

We modify the user login behavior to include an ac-
tion that generates an interrupt (i.e., power button press).
Normally, this means means “terminate” or “turn the
screen off and terminate” (depending on the phone op-
erating system), but the meaning is changed to mean “go
ahead” for whitelisted sites. We make this action manda-
tory for whitelisted sites. As a result, as a user visits a
spoofed site – believing she is at a legitimate site – acts
just as she does on legitimate sites. On spoofed sites, this
causes the termination of the browser, and therefore also
of the offending website. (It is worth mentioning that
while malware with root access can spoof the pressing of
the power button, a spoofed webpage cannot; nor can a
malicious app without root access.)

The new functionality can easily be achieved by mod-
ifying browsers, as demonstrated in a proof-of-concept
implementation we have made by modifying the open-
source browser Zirco. In our modified version, which
runs on Android devices, the meaning of the power but-
ton is changed in the context of whitelisted sites. It could
either simply be made to mean “go ahead, enter your
password now” as in our implementation, or “we have
autofilled your user name; now enter your password”,
to provide a user incentive for make up for the extra
button press. However, the meaning of the power but-
ton is not changed for other sites. Therefore, if a user
presses the power button on a spoof site – not necessar-
ily because she thinks it is a secure site, but simply ha-
bitually performing her normal login actions – then the
browser session will end and the user be brought back
to the home screen, because the interrupt handler did not
find the URL on the whitelist.

A technique of potential independent value is one that
we developed to force users to comply with the new login
procedure, all while respecting legacy sites not to have
to be aware of our needs and actions. The approach we
take is simply to let the browser inject javascript in the
DOM of the visited site (thereby making it appear that
this javascript code was part of the website); where the
injected javascript code searches for tags indicative of
password fields, and rewrite the website source code to
signal the whereabouts of such fields to the browser. If a
user attempts to enter text in any such field without first
having pressed the power button, the browser will give
the user tactile feedback and an alert explaining the need
to press the power button on trusted sites. This, in fact,
can be the only teaching process by which user behavior
is changed.

At first sight, this may seem to mean that a phishing
site could modify the HTML so make sure that there
would be no tag to trigger the detection of the password
field. However, this is a misunderstanding, as the detec-
tion of the password field is merely a tool to train the
user to press power, by recurrent conditioning as the user
visits legitimate sites. Legitimate sites will not attempt
to circumvent the detection of the password field. The
abortion of phishing sites does not depend to any extent
on the code of the webpages; it is simply a consequence
of the user’s actions.

Outline. We begin with a brief overview of related
work (section 2), after which we describe the psycholog-
ical principles that our solution is based on (section 3). In
section 4, we describe an implementation of SpoofKiller,
followed in section 5 by an experimental evaluation of it.
We briefly describe a proof of concept implementation in
section 7, and end with a brief discussion of future work
in section 8.

2 Related Work

The problem of web spoofing was first given attention
by Felten, Balfanz, Dean and Wallach [5], years before it
was embraced by phishers as a tool of deceit. While cre-
dential theft aided by social engineering took place on
AOL as early as the mid-nineties, it was not until 2001
that phishing of the type we are used to today started
to appear, first targeting e-gold account holders [10] and
then gradually becoming a threat against regular bank-
ing. Around 2005, phishing was commonly recognized
as a significant problem.

Spoofing is a complex socio-technical problem, and
researchers have long studied what typical users pay at-
tention to, and fail paying attention to [4, 11, 14, 15, 16,
26, 28]. They have also studied the more general ques-
tion of what makes people assign trust [17, 18, 21, 24,
25]. Much of this research, sadly, supports what can be
understood simply from observing the rising trend of on-
line fraud: Typical users are not good at making proper
online trust decisions.

To attempt to improve how trust decisions are made,
substantial efforts have been made to better convey state-
ments of security to users [1, 3, 9, 12, 20, 29] and more
generally, to educate users about the need to pay atten-
tion to security indicators [19, 23]. While we are not
against such efforts, we think of them as last resorts –
approaches to take in the absence of automated protec-
tion mechanisms.

In line with this view is a body of work aimed at
protecting the user without any attempt at messaging
[6, 8, 22]. We believe that in order for the system to be
reliable, it should not depend on the user making proper
security decisions. That is the view on which the pro-
posed solution is based.

3 Understanding Conditioning

In learning theory, two major classes of learning pro-
cesses have been identified: classical conditioning and
operant conditioning. In his famous classical condition-
ing experiment, Pavlov described how dogs learn to as-
sociate the ring of a bell (which is referred to as the con-
ditioned stimulus) to food (the so-called unconditioned
stimulus) [13]. While classical conditioning relates to
performing actions in response to a potential reward or
punishment, operant conditioning relates to performing
actions intended to cause or avoid the reward or punish-
ment. More specifically, operant conditioning identifies
how an individual learns that a operant or action may
have specific consequences (see, e.g., [7]). As a result
of operant conditioning, the individual modifies her be-
havior to increase the chances of the desired outcome.

2

Operant conditioning could be used to describe the
process by which users learn how to interact with com-
puter systems. For example, a user may learn that a
click on an X-icon (operant or action) in a window re-
sults in the abortion of the associated application (conse-
quence). Similarly, users of Android devices have learnt
that pressing the power button terminates an application
and locks the phone.

When a user aims to reach a goal for the first few
times, she performs a collection of actions until the de-
sirable outcome is caused. As the desired consequence
occurs (e.g., the user succeeds in locking the phone), the
relation to the operant/action (e.g., to press the power
button) is reinforced – we say that she learnt.

Similarly, in the context of login, users have learnt to
enable username and password entries by a click or tap
in order to enter her credentials. This is both a matter
of classical conditioning, where the opportunity to log in
is communicated by the display of the login page; and
of operant conditioning, where the user knows that by
clicking or tapping on the fields, she will be rewarded by
the access to her account.

SpoofKiller habituates users to pressing the power but-
ton to log in to legitimate sites, using a combination of
rewards and punishments. In the context of whitelisted
webpages, the reward is access to the associated account,
while the punishment for not pressing the power button
consists of tactile feedback and an alert. At the same
time, the desirable login action (i.e., the pressing of the
power button) is interpreted by the device as a request to
terminate the session outside the context of a whitelisted
website. Therefore, as soon as users have learnt the new
login procedure (pressing the power button to log in),
they are protected against spoof sites, which will be ter-
minated by this action.

This leaves two important cases to be considered. First
of all, it is evident that good sites that are not whitelisted
would potentially suffer the same fate as spoof sites –
the termination of the user’s session as a result of the
user’s intention to log in. Apart from requesting to get
whitelisted, this problem can be addressed by the oper-
ators of such sites by replacing the conditioned stimu-
lus (the login page) with an alert, as shown in Figure 1,
which makes the user aware of the procedural exception.

A second important question to consider is how fraud-
sters may react to the threat of having their sessions ter-
minated. One general approach is to display an alert sim-
ilar to that shown in Figure 1, but potentially with even
more reassuring messaging. While this may trick some
users to proceed, it will at least raise their awareness of
the login session being a special case; institutional mes-
saging by whitelisted sites could attempt to minimize this
risk by reinforcing that they will never ask the user to
avoid the power button. Another adversarial strategy is

Figure 1: The figure shows how legitimate sites that
are not whitelisted can avoid termination. The screen
to the left takes the place of the regular login screen, to
avoid the operant (power press) by removing the condi-
tioned stimulus (the regular login screen). On the second
screen, the user is instructed not to press the power but-
ton. The actual login screen (not shown above) is not
displayed until the user has acknowledged. While many
users may still press the button right after having made
this acknowledgment and being shown the login screen,
they will know how to return and try again.

to make the user experience as similar as possible to the
real experience (which is typically the path taken by to-
day’s spoofers), and hope that the targeted user is not yet
conditioned to pressing power, or will somehow fail to
do this anyway.

4 App Implementation

Typical Android devices are equipped with an array of
sensors – such as the touch screen; means for voice in-
put; GPS; and an accelerometer. The events are delivered
from the underlying device drivers to the OS. The OS
forwards the events to active applications, or (for events
such as location events or incoming calls) broadcasts
them as a new Intent. Intents are delivered to all sub-
scribed apps – even those that were not active at the time
of the event. As a result of the broadcast of an Intent,
a subscribing application may be activated. (Apps sub-
scribe to Intents by setting up a BroadcastReceiver and
its associated intent filters in the manifest of the Android
application.) There are two exceptions to this rule. First,
the home button press is just delivered to the Launcher
(an application responsible to manage the home screen);

3

second, the power button press is not delivered to any
third party application.

For SpoofKiller to be triggered by the power button,
one either needs to modify the Android OS to deliver
the event to our augmented browser (which would re-
sult in complications for us, as it would limit the exper-
iment to users with dev phones), or one needs to trigger
SpoofKiller using something that is a consequence of the
power button being pressed – such as the screen off event.
We did the latter.

As it is shown in the code below, we registered for the
Broadcast event of Screen Off. The onReceive method
is called when the Power Press is occurred. As a result,
we have an event which is not catchable – or possible to
generate – by a web page, and which is used to trigger
SpoofKiller to check the whitelist.

BroadcastReceiver screenoff =

new BroadcastReceiver() {

public static final String Screenoff =

"android.intent.action.SCREEN_OFF";

//Indicate what to do

//when the power is pressed

@Override

public void onReceive(

Context context,Intent intent) {

//Enable password field

}};

//Indicate the type of

//event interested to receive

IntentFilter offfilter =

new IntentFilter (Intent.ACTION_SCREEN_OFF);

//Application registers

//to receive screen off event

registerReceiver(screenoff, offfilter);

}

Most Android-based browsers use the WebView class,
which is incorporated in Android WebKit package. This
class is given URI’s as input and loads and displays the
content of associated web-pages. In addition to perform-
ing standard functionality associated with web browsing,
such as running Javascript code and rendering HTML
and CSS, WebView allows a web page to call a method
of the browser. This functionality, as shown in the
code below, allows browser manufacturers to incorporate
SpoofKiller in their browsers in a straightforward man-
ner.

class JavaScriptInterface {

@SuppressWarnings("unused")

public boolean enableSpoofKiller() {

//set up page to handle Power Press

//If the page is not in whitelist,

//this call causes page abortion

}

}

.

.

.

mWebView.addJavascriptInterface(

new JavaScriptInterface(),

"spoofkillerhandler");

In the code above, the browser provides a JavaScript
interface named spoofkillerhandler, which enables
JavaScript code in the webpage to communicate with
SpoofKiller. This lets a webpage announce that it wants
the support of SpoofKiller on a particular page. (Not all
pages on a legitimate website needs the support, but just
those that ask for credentials).

We also incorporated other functionality, such as a
method to give tactile feedback when a user tries to enter
his password – without first having pressed power. This
has to be triggered by JavaScript in the webpage. To sup-
port legacy webpages, we have used a technique we call
“on the Air Manipulation of Page” (AMP), which en-
ables browsers to modify the contents of the webpage by
injecting scripting code that determines whether the web-
page should request SpoofKiller support. This is done
simply by injecting a string of JavaScript as a URL to
each webpage that is loaded. This is done by the browser,
a trick that permits access to the document object model
(DOM) of the current webpage in spite of the fact that
the JavaScript code was not really served by the domain
associated with the webpage in question. The code snip-
pet below shows how loading a string of JavaScript as a
URL lets us attach an onclick event to password elements
in a webpage.

In our implementation of ZircoSecure – our proof-of-
concept browser supporting SpoofKiller – we used the
AMP technique to inject JavaScript code in a page loaded
in the browser in order to let this injected routine identify
fields of importance (using tags) and communicate to the
browser when any such field is accessed by the user. This
is to accommodate legacy websites while at the same
time making sure that whitelisted pages are modified to
help the browser identify fields that the user is not al-
lowed to access without first pressing the power button.
This, in other words, is what enables the user condition-
ing described in section 3.

The AMP technique makes it possible to deploy
SpoofKiller locally, without infrastructure changes or
modifications of legacy pages. Browser manufacturers
– or those writing plugins for browsers – simply need to
incorporate spoofkillerHandler and the JavaScript injec-
tion code into their browsers.

4

The current implementation of SpoofKiller suffers
from the screen blackout, since the operating system per-
forms that task as a direct result of detecting an interrupt
caused by the power button being pressed. In order to
make the SpoofKiller work smoothly and without this
undesirable effect, there is a need for a modification of
the Android OS. This is a straightforward modification.
Using the OTA (over the air update) technology for An-
droid, is is possible to incorporate this with any new re-
lease of the Android OS.

5 Experimental Evaluation

While convinced that SpoofKiller would work in theory,
based on known observations on human conditioning, we
also need to find heuristic support to back this belief, and
to estimate the steepness of the typical learning curve as
people start to use SpoofKiller. More specifically, we
need to answer the following questions:

1. Is it practically feasible for users to change a
frequently practiced habit, namely the manner in
which they log in?

2. How long does it typically take for users to acquire
a new login behavior, provided initial instructions
and appropriate reinforcement?

These two questions relate directly to the practicability
and likely user acceptance of the new approach. In par-
ticular, if the new behavior is commonly embraced and
quickly becomes habitual, then this reduces the size of
the population that is susceptive to abuse and reduces the
risk of corruption for those who have adopted the new
behavior. A core question to be answered is then:

3. What percentage of users would be protected
against typical phishing attacks after an initial pe-
riod of learning?

To find answers to these questions, we designed and
carried out an experiment, which we will describe next.

5.1 Experiment Design
We recruited subjects to download and run an experiment
app, either from a webpage of ours or from Google’s An-
droid marketplace1. During setup, we asked subjects to
select a username and password – ostensibly so that only
the subject would have access to his or her environment.
Then, subjects were asked to participate in a number of
sessions over time, each session having the following two
parts:

1Interestingly, many subjects expressed a higher confidence in the
marketplace version, in spite of the absence of any user feedback or
any rigid screening.

1. Perform a login, wherein the user name was aut-
ofilled, and where the subject had to enter the pass-
word; but where he or she had to press the power
button before doing so. Unbeknownst to the user, all
actions and the time at which they were performed
were logged. We will refer to this part as the au-
thentication phase.

2. Type three words – chosen at random from a large
set of words – as fast as possible. After performing
this task, the user would be told how long it took;
what his or her average time to date was; and what
her ranking based on speed was. This part of the
experiment was only there to take the attention away
from the first part. (To add to the impression that
the timing to typing was what the experiment was
about, we named the experiment app Speed Test.)

In the authentication phase, the user was given tactile
and textual feedback if she attempted to enter her pass-
word without first having pressed the power button. The
textual feedback was (in blinking font) “Notice: For se-
curity reasons, you always must press the power button
before entering your password in our test.” This consti-
tuted the main tool of user conditioning.

Figure 2: The figure shows the Instruction treatment in
our experiment, wherein the user is told “Notice: For se-
curity reasons, you always must press the power button
before entering your password in our test”. In the Empty
treatment, that instruction is absent, whereas in the Bad
treatment the instruction given to the user is instead “No-
tice: Do not press power. Enter the password you use to
log in to [user’s email address]”.

5

The experiment had three different treatments, all of
them providing slightly different versions of what was
shown to the user during the authentication phase. We
refer to the three treatments as Instruction, Empty and
Bad: The I treatment contained the instruction “Notice:
For security reasons, you always must press the power
button before entering your password in our test”, as
shown in Figure 2. The E treatment was identical to the
I treatment, except that it did not contain this instruc-
tion. Finally, the B treatment, had a “bad” instruction,
prompting the user “Notice: Do not press power. Enter
the password you use to log in to [user’s email address].”
That last treatment was introduced to determine whether
subjects pay attention to instructions after having learnt
what to do; and if so, whether they were willing to follow
an instruction that has the semblance of being abusive.

To be eligible for the participation incentive, subjects
had to participate for 21 days out of a month. Many
subjects participated in more than one session per day –
probably because we emphasized the competitive aspects
of the experiment, and many tried hard to improve their
speed during the phase where they typed three words. If
a subject participated in more than one session per day,
all sessions of that day proceeding the first session were
chosen as treatment E.

We ran two versions of the experiment, which we may
refer to as the instruction heavy and the instruction light
version. In the instruction heavy version, the I treatment
was the most common, while in the instruction light ver-
sion, it was only used for a small number of days in the
beginning. The aim of using these two experiments was
to determine whether the conditioning that we expected
to take place was a result of pre-action messaging (i.e.,
the instruction); post-action reinforcement (whether suc-
cess or the tactile/textual feedback); or a combination of
the two.

More specifically, in the instruction heavy version, the
treatment shown to a user was always I, except on days
9 and 18 on which treatment E was used, and on day
21, on which treatment B was used. In contrast, in the
instruction light version, I was only shown on days 1-5,
after which treatment E was used until day 21, at which
treatment B was used.

5.2 Subject Recruiting

Before starting to recruit subjects, we attempted to esti-
mate the number of subjects we would need, for a desired
confidence of 95%. Since the population of the smart
phone users is large, we used Cochrans’ formula. Based
on this, we established that we needed to recruit 385 sub-
jects, given z= 1.96 (i.e., confidence level 95%), e=0.05
(the precision level), p = 0.5 and q = 0.5 (the maximum
variability). We assumed maximum variability at first

since we did not know to what extent different users be-
have differently. As we analyzed the results, it become
evident that users behave similarly to each other.

The drop-off rates in the unsupervised experiments are
different based on the assigned task and the reward which
is given to the participants. Based on our experience with
structurally similar experiments in the past, we assumed
an approximate 50% drop-off rate, suggesting the need
to recruit close to 800 participants.

Recruitment of such a large number of participants
was challenging, given the fact that users had to be over
18 years of age (to comply with guidelines outlined in the
Belmont report); have an Android Phone; be willing to
install an application; and to participate for 21 days dur-
ing the course of a month. Moreover, in order to avoid
bias, we avoided recruiting anybody who knew what the
experiment was about, which excluded some of the oth-
erwise most passionate potential participants.

Instruction Heavy Version. We recruited subjects by
requesting participation from our LinkedIn contacts; our
Google+ contacts; and our Facebook contacts. More-
over, we recruited participants among colleagues at Pay-
Pal and Google; and from members of HCI research
groups. Subjects were incentivized by the chance of win-
ning a raffle for an iPad22, with extra raffle tickets given
to people who helped recruit subjects. Out of 198 sub-
jects who registered, 15 entered as a result of a referral.
A total of 77 of the 198 registered users completed their
participation; 6 of those were due to referrals. All of
these users participated in the instruction heavy version
of the experiment, which was intended as the only ver-
sion of the experiment until the disappointing numbers
prompted us to recruit another batch of users – at which
time we also decided to tweak the experiment to see
whether the amount of instructions would matter much.

Instruction Light Version. In the second round of the
experiment, which corresponded to the instruction light
version, we recruited workers from Amazon Mechanical
Turk to participate3 and gave them the option of a $5
bonus or the chance to win an iPad/Android pad. Among
the 307 who registered, 231 completed the study; more
than 90% selected the cash bonus.

2After plentiful feedback from participants and would-be partici-
pants, we changed the raffle prize to the winner’s choice of an iPad2 or
an Android pad.

3It is against the terms of service of Amazon to ask a user to install a
piece of software. While we used the payment methods associated with
Amazon Mechanical Turk to pay participants, we did not use their ser-
vices to recruit participants, and so, did not break the terms of service.
These users had voluntarily provided contact information in previous
interactions, and were contacted in this manner to ask whether they
would like to participate.

6

Table 1: Ages of subjects in the experiment versions.
Age Range Heavy % Light % Combined %
18-25 28.1 36.8 33.5
26-32 29.5 34.6 32.7
33-45 28.1 21.9 24.3
46+ 14.4 6.6 9.5

Table 2: Subjects’ gender in experiment versions.
Age Range % Heavy % Light % Combined
Female 47.8 24.5 39.0
Male 52.2 75.5 61.0

Demographics. Tables 1 and 2 show the breakdown
in terms of age and gender among the subjects in our two
experiment versions (instruction heavy vs light.) This is
very similar to the demographic of the Android phone
owners [27, 2]. Table 3 shows the experience with enter-
ing passwords on handsets of the subjects.

Table 3: Password use on handsets.
Use % of subjects

Daily 30
Weekly 26
Rarely 33
Never 11

5.3 Observation of Actions
The experiment app recorded all the user actions as the
user ran our app, including page taps, keyboard presses,
and hard-key presses (volume, home, back, menu, and
power press) – along with the time at which each such
action was performed. It stored the recorded data in a
local database on user’ handset, and then transmitted it to
a back-end server for analysis. (The data was submitted
asynchronously, to make it possible for test takers to take
the test when they are offline, and to avoid the data lost
in the case of exceptional conditions.)

From the collected data, we could determine the time
it took for subjects to press the power button, after start-
ing the authentication phase, and the number and type
of actions – if any – that she performed before pressing
power.

5.4 Findings
Using the data collected in the experiment, we used sta-
tistical analysis techniques to answer the questions and
validate the hypotheses outlined at the beginning of sec-
tion 5.

Feasibility and Learning Curve. The cumulative per-
formance, shown in figure 3, is a measure of the how
quickly subjects adopt to the new behavior. It shows the
percentage of subjects performing the correct action –
pressing the power button before attempting to log in –
as a function of the number of days of participation in the
experiment. It shows the performance of subjects in both
experiment versions – instruction heavy and instruction
light.

Figure 3: The figure shows the cumulative distribution
of the acquisition of the safe habit (to press power before
entering a password), as a function of days of exposure
to the new procedure. We see a dip on days 9 and 18
in the heavy version, and one on day 6 for the light ver-
sion; these all coincides with a sudden E treatment after
a number of I treatments.

The learning curve shown in figure 3 is Sigmoid-like
for both experiment versions, and the cumulative perfor-
mance exhibits a dramatic increase during the first few
days of participation; we refer to these days as the acqui-
sition period, during which user tries different actions
(like keyboard press, screen touch), and finally is con-
ditioned to performing the correct operant. We can see
that the proportion of correct actions is 80% ±5% (with
n = 305,χ2 = 0.0461) for both versions, once the users
have acquired the new habit (starting at day 10). We refer
to the period starting at that point in time as the protected
period. The average performance of the users during the
protected period is 79.6% ±3%. This is also a measure
of the probability with which these users would be pro-
tected against a spoofing attack that they would other-
wise have fallen for.

7

A reverse regression model suggests that the cumula-
tive percentage of correct actions is: 88.415−76.986/t,
where t denotes the number of days of participation. This
suggests a cumulative performance of 87.5% after 84
days, with a significance level of 99%.

In the instruction heavy version (n=73), we used the E
treatment (in which no instruction is provided) on days 9
and 18 in order to determine what portions of subjects
have internalized the pressing of the power button by
then. Our results show that 52% of the subjects had ac-
quired the secure behavior by day 9, and 72% by day 18.
In the light version (n=246), treatment E is used from day
6 to day 20. As it could be seen in figure 3, the perfor-
mance is hovering around 80% during this time, with a
mean of 80% ±1.1%.

Figure 4: The figure shows the cumulative distribution
of the extinction as a function of maximum number of
continues days of continuously correct behavior.

The speed with which a user “forgets” an acquired
habit is referred to as the extinction rate. During the pro-
tected period (days 10 to 20), the average extinction rate
for subjects of the heavy version is 4.70 (n=86), meaning
that users make one mistake after 4.70 days on average,
and then reacquire the habit again. During the same pe-
riod, subjects in the light version have an average extinc-
tion rate of 5.07 (n=246). See figure 4 for a distribution
of this aspect of the users behavior. We argue that the
instruction light approach is preferable to the instruction
heavy approach due to the similar user performance and
its cleaner user interface.

We do not believe that the differences in behavior be-
tween the instruction heavy and light versions are due
to a bias in the choice of subjects – in particular since
the instruction light subjects were faster learners, while
– coming from Mechanical Turk – are believed to be less
likely to care as much as colleagues and friends & family
would.

Protection and Prediction. We want to establish the
extent to which practice makes perfect in the context of
SpoofKiller – or put another way, how the probability of
performing a login action that is “spoof killing” depends
on the number of days of exposure.

It is evident that the effects of conditioning are most
notable during the first few days of exposure, given the
rather rapid learning process (see figure 3 above.)

Figure 5: Clustering of users based on their performance
during days 10 to 20. We informally refer to the high
performers as “A students”, the intermediate performers
as “B students”, and the low performers as “C students”.

It is also very clear that not all users are equally pro-
tected, as can be seen in figure 5. Therein we show the re-
sults of performing hierarchical clustering on the exper-
imental data based on the subjects’ performance during
the period we refer to as the “protected period”. Three
meaningful clusters are detected; we refer to these as the
“A students”, the “B students” and the “C students”, the
names indicating the extent to which subjects in these
clusters learnt the new login procedure. Having made
this distinction, it is interesting to see the adoption be-
havior of the subjects, partitioned into these three classes.
See figure 6. The partition of users into different risk
classes, as above, suggests the potential need for addi-
tional security measures for users who are identified as
being more risk prone – what we refer to as “C students”.
These are easily detected based on their behavior.

One difficulty facing “C students” is that they do not
maintain the desirable behavior when the instruction is
removed. This can be seen from figure 6, wherein we
see that the performance drops for these subjects after
the instruction is removed in the instruction light version
on day 6. C Students have a very high extinction rate
(mean=0.47 days), which means that they have not inter-
nalized the desired habit. In comparison, ”B students”
have an extinction rate of 1.72 days, while “A students”

8

6.60 days on average. In general, there is a strong cor-
relation (cor=0.7) between user’s performance and the
extinction rate.

Figure 6: The performance of subjects as a function of
time, where the subjects are partitioned into the classes
“A students” (70% of all subjects, 92% average perfor-
mance), “B students” (20% of the subjects, 66% aver-
age performance) and “C students” (10% of the subjects,
14% average performance).

Fraud Protection On the last day of the experiment,
we used treatment Bad, in which users were asked not to
press the power button, and to enter their email password
instead of the password used in the experiment. (We did
not record what password was entered, but only whether
the same password was entered as during the previous
session; this was to avoid stealing anybody’s email pass-
word.)

Table 4: User behavior in Bad treatment (%)
Instruction Correct Delayed Oblivious Tricked

Heavy 22% 4% 48% 26%
Light 27% 4% 57% 12%

Combined 27% 4% 55% 15%

The B treatment was used to mimic a fraud case. As
Table 4 shows, roughly 30% of the users pressed the
power button – most of them as rapidly as during “nor-
mal” days (the “correct” reaction), and about 4% after

a slight delay. The rest of the users did not press the
power button. Approximately 55% of the users – inde-
pendently of whether they pressed the power button or
not – entered the same password as previously during
the experiment, apparently oblivious to the request to en-
ter something else, or unwilling to do so. 15% entered
something else – supposedly the password to their email
account.

Table 5: Behavior of classes of users in Bad treatment
Class Correct Delayed Oblivious Tricked

A Student 29% 3% 55% 11%
B Student 21% 3% 50% 25%
C Student 3% 14% 60% 21%

Table 5 shows that A students are better protected in
comparison to others, in contexts involving deceit.

6 User Reactions

After a few days of participation, the added action – to
have to press the power button – added less than half a
second to the time the login took; see figure 7.

The reaction time is also a factor of age; younger sub-
jects have shorter reaction time, in comparison to older
subjects. Table 6 shows average speed from page load to
power press for different age groups.

Table 6: Reaction time for different age groups.
Age Range Average reaction time (s)

18-25 3.00
26-32 3.50
33-45 3.67
46+ 6.25

As subjects completed their participation in their ex-
periment, we asked them what they thought about hav-
ing to press the power button before logging in with a
password. Out of the 227 subjects, 127 subjects (56%)
selected the response “I got used to it quickly” while 24
subjects (11%) selected the opposite response “I would
have a hard time getting used to that”, leaving 76 subjects
(33%) having expressed neither opinion.

The average performance of the users who responded
“I got used to it quickly” (n=112) was not statistically
distinguishable from that of the users who responded “I
would have a hard time getting used to that” (n=21).

At the same time, 114 subjects (50%) selected “If it
would provide extra security of any kind, I would be
happy to do that”, 52 subjects (23%) selected the oppo-
site response “I would rather not have to do that, even if
it had some security benefit,” leaving 61 subjects (27%)
having expressed neither opinion.

9

Figure 7: The graph shows the average time for subjects
from page rendering to the subject pressing the power
button. This is shown as a function of the day of partic-
ipation. We only show the time for users who perform
the correct action. The average reaction time in the pro-
tected period (day 10 onwards) for the heavy version is
2.62 seconds, and 2.56 seconds for the light version. In
comparison, the user reaction time for similar-style pages
but where the user does not need to press the power but-
ton is 2.5 seconds – the average time for this corresponds
to the dotted line. The time associated with pressing the
power button is therefore less than half a second.

Furthermore, we asked all subjects if they had any
comments or questions. Several subjects felt frustrated
with having to press the power button, mostly due to the
fact that it turned the screen off and on again, and for one
subject also to lock the phone. Neither of these would
occur for a real SpoofKiller implementation, and these
experiences were the results of us simplifying the imple-
mentation a bit, at the expense of a flawless user experi-
ence. More specifically, the feedback on this topic was
“It made my screen go black for a second to press the
power button, so it kind of just slowed down the whole
process, if it was quick I wouldn’t have minded so much,”
“Having to press the power button was horribly annoy-
ing. To the point that I almost didn’t finish the study. I
would NOT use an app regularly if that was part of it,”
“If a power button on a phone fails by pressing it to of-
ten - that’s a bad thing and that’s why I responded that I
would rather not have to do that, even if it had some secu-
rity benefit,” “My phone automatically locks every time
I press the power button, which meant I had to put in my
phone password to get back to the program. Sometimes

when this happened, the program would again tell me
that I needed to press the power button. This was frus-
trating,” “I didn’t know why I was pressing the power
button. I felt weird doing it like I was being scammed or
something. I wanted to know more about why I was do-
ing it, not just because it is secure,” “The power button
thing was strange, and I couldn’t get used to it. I don’t
really know how effective it could be either. Either way,
this was an interesting experiment that I hope leads to
greater security and password storage. I will say that I
prefer the three word password to the uppercase letter-
special number or symbol type passwords that are more
common. I have a hard time remembering them.”

Several subjects also were puzzled or concerned about
the request for a different password on the last day of the
study. Feedback relating to this was “At the end the test
asked me to put in my gmail password. I didn’t do that. I
put in my regular password. I feel like that’s a security is-
sue,” “When you prompted me for my email password on
the last day, I typed the password that I had been typing
each day. I wouldn’t have typed in my email password
at any rate, but after a month of typing the same pass-
word into the same app, the user likely will type in what
he has each day, regardless of what the blinking red text
tells him,” “On the last day, entering the same password
as every other day isn’t going to disqualify me from the
reward, right?” In addition, one of the subjects provided
negative feedback on our experimental app on the An-
droid marketplace, explaining that the app tried to steal
his password: “Do not install the application because in
the day 21, asks for email password and application ob-
viously wants to gain your password.”

We also performed in-depth interviews with subjects
willing to discuss their thoughts further. In these inter-
views, one user stated ‘‘I likely forgot pressing the power
button over 50% of the time. No other app requires this
and 20 days of once per day use of Speed Test were not
enough for the motion to become part of my muscle mem-
ory.” Another subject also made a comment that showed
that he had not only been conditioned to pressing the
power button before logging in, but that he had to re-
sist pressing it twice – as a result of seeing the screen go
off –“It’s funny, but I had a hard time shaking off the in-
stinct/reflex to double hit the power button, as if to turn
the phone right back on again. Perhaps I’m not the only
one.” Again, this would not be an issue in a real imple-
mentation, but is a testament to how common reflexive
behavior is.

7 Availability

A proof-of-concept version of SpoofKiller has been im-
plemented and tested, using the open-source mobile
browser Zirco. The modified browser, which we refer

10

to as ZircoSecure, is available for download on the An-
droid marketplace, at www.zircosecure.com, which
redirects to a page on the Android marketplace.

In addition to the added SpoofKiller functionality, Zir-
coSecure has a scrollable whitelist menu to which a
user can locally add entries. Several ZircoSecure testers
called out the backwards feeling of using the whitelist,
bringing to mind the functionality of early web portals
during days when the web was small enough for all com-
monly accessed sites to be listed on one portal webpage.
Ihe scrollable whitelist, it should be noted, is only to
make up for the fact that the whitelist we include with
ZircoSecure is so limited that knowledge of what is on
the list is important for a meaningful demo. A real im-
plementation would not suffer this limitation.

Testers also pointed to the awkward browsing expe-
rience – which is a simple artifact of the Zirco browser
experience, and not intrinsic to SpoofKiller or any im-
plementation of it. Finally, testers of ZircoSecure and
experiment subjects alike complanied of the temporary
blacking out of the screen after the power button was
pressed. This, too, is not a necessary consequence of us-
ing SpoofKiller, but simply a consequence how we chose
to do it, as described in section 4.

8 Future Work

We have described how to implement the principles of
SpoofKiller to protect web browsing sessions. Very simi-
lar techniques can also protect against app spoofing. This
can be achieved by modifying the interrupt handler of the
operating system. We are currently considering the intri-
cacies of doing this.

It is possible to combine the use of a whitelist – as
described in this paper – with heuristics and a blacklist.
If a site is not on the blacklist, and the heuristics indicate
that it is plausible not to be a threat, then after the user
presses the power button, she may be cautioned not to
enter her password if she does not trust the site, or to
whitelist the site for her own purposes if she is convinced
that it is secure. We have not attempted to assess the
practicality if this approach, nor the impact on the user
experience, but it is an interesting problem to resolve.
Another interesting problem is how to best design the
heuristics to determinine the likely security of a website.

Acknowledgments

We have benefitted from insightful discussions with
Nathan Good, William Leddy and Diana Smetters, and
from helpful feedback on an earlier draft of the paper by
M. Mannan. We are thankful to Dahn Tamir for help
with MTurk experiments. We also appreciate the helpful

feedback we have received from numerous colleagues,
and from participants in our user study.

References

[1] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and
J. C. Mitchell. Client-side defense against web-
based identity theft. 2004.

[2] P. Daniel. Android users de-
mographics, November 19, 2010,
http://www.phonearena.com/news/Android-
users-demographics id14786/.

[3] R. Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. In Proceedings
of the 2005 symposium on Usable privacy and se-
curity, SOUPS ’05, pages 77–88, New York, NY,
USA, 2005. ACM.

[4] R. Dhamija, J. D. Tygar, and M. Hearst. Why phish-
ing works. In Proceedings of the SIGCHI confer-
ence on Human Factors in computing systems, CHI
’06, pages 581–590, New York, NY, USA, 2006.
ACM.

[5] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wal-
lach. Web spoofing: An internet con game, Tech-
nical Report 540-96 (revised Feb. 1997), Depart-
ment of Computer Science, Princeton University
http://www.cs.princeton.edu/sip/pub/spoofing.pdf.

[6] I. Fette, N. Sadeh, and A. Tomasic. Learning to de-
tect phishing emails. In Proceedings of the 16th in-
ternational conference on World Wide Web, WWW
’07, pages 649–656, New York, NY, USA, 2007.
ACM.

[7] E. Fulcher. Cognitive psychology. 2003,
http://www.eamonfulcher.com/CogPsych/page5.htm.

[8] S. Garera, N. Provos, M. Chew, and A. D. Ru-
bin. A framework for detection and measurement
of phishing attacks. In Proceedings of the 2007
ACM workshop on Recurring malcode, WORM
’07, pages 1–8, New York, NY, USA, 2007. ACM.

[9] S. L. Garfinkel and R. C. Miller. Johnny 2: a user
test of key continuity management with s/mime and
outlook express. In Proceedings of the 2005 sympo-
sium on Usable privacy and security, SOUPS ’05,
pages 13–24, New York, NY, USA, 2005. ACM.

[10] I. Goldberg. e-gold stomps on phishing?,
http://www.financialcryptography.com/mt/archives/
000190.html, July, 2004.

11

[11] A. Herzberg. Why Johnny can’t surf (safely)? At-
tacks and defenses for web users. Computers &
Security, pages 63–71, 2009.

[12] A. Herzberg and A. Gbara. Security and identifi-
cation indicators for browsers against spoofing and
phishing attacks. Cryptology ePrint Archive, Re-
port 2004/155, 2004.

[13] G. V. A. Ivan Petrovich Pavlov. Conditioned re-
flexes : an investigation of the physiological activity
of the cerebral cortex. Dover Publications, Septem-
ber 2003.

[14] C. Jackson, D. R. Simon, D. S. Tan, and A. Barth.
An evaluation of extended validation and picture-
in-picture phishing attacks. In Proceedings of the
11th International Conference on Financial cryp-
tography and 1st International conference on Us-
able Security, FC’07/USEC’07, pages 281–293,
Berlin, Heidelberg, 2007. Springer-Verlag.

[15] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and
F. Menczer. Social phishing. Commun. ACM,
50(10):94–100, 2007.

[16] M. Jakobsson and J. Ratkiewicz. Designing ethi-
cal phishing experiments: a study of (ROT13) rOnl
query features. In WWW ’06: Proceedings of the
15th international conference on World Wide Web,
pages 513–522, New York, NY, USA, 2006. ACM.

[17] M. Jakobsson, A. Tsow, A. Shah, E. Blevis, and
Y.-K. Lim. What instills trust? a qualitative study
of phishing. In FC’07/USEC’07: Proceedings
of the 11th International Conference on Financial
cryptography and 1st International conference on
Usable Security, pages 356–361. Springer-Verlag,
2007.

[18] I. Kirlappos and M. A. Sasse. Security education
against phishing: A modest proposal for a major
re-think. IEEE Security and Privacy, 99(PrePrints),
2011.

[19] P. Kumaraguru, Y. Rhee, S. Sheng, S. Hasan,
A. Acquisti, L. F. Cranor, and J. Hong. Getting
users to pay attention to anti-phishing education:
evaluation of retention and transfer. In Proceedings
of the anti-phishing working groups 2nd annual
eCrime researchers summit, eCrime ’07, pages 70–
81, New York, NY, USA, 2007. ACM.

[20] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing
is believing; using camera phones for human veri-
fiable authentication. Int. J. Secur. Netw., 4:43–56,
February 2009.

[21] J. Riegelsberger, M. A. Sasse, and J. D. McCarthy.
The mechanics of trust: a framework for research
and design. Int. J. Hum.-Comput. Stud., 62:381–
422, March 2005.

[22] B. Ross, C. Jackson, N. Miyake, D. Boneh, and
J. C. Mitchell. Stronger password authentication
using browser extensions. In Proceedings of the
14th conference on USENIX Security Symposium -
Volume 14, pages 2–2, Berkeley, CA, USA, 2005.
USENIX Association.

[23] S. Srikwan and M. Jakobsson. Using cartoons to
teach Internet security. Cryptologia, 32(2):137–
154, 2008.

[24] F. Stajano and P. Wilson. Understanding scam vic-
tims: seven principles for systems security. Com-
mun. ACM, 54:70–75, Mar. 2011.

[25] R. Wash. Folk models of home computer secu-
rity. In Proceedings of the Sixth Symposium on
Usable Privacy and Security, SOUPS ’10, pages
11:1–11:16, New York, NY, USA, 2010. ACM.

[26] T. Whalen and K. M. Inkpen. Gathering evidence:
use of visual security cues in web browsers. In Pro-
ceedings of Graphics Interface 2005, GI ’05, pages
137–144, School of Computer Science, Univer-
sity of Waterloo, Waterloo, Ontario, Canada, 2005.
Canadian Human-Computer Communications So-
ciety.

[27] L. Woolston. Mobclix index: An-
droid marketplace, November 17, 2010,
http://blog.mobclix.com/2010/11/17/mobclix-
index-android-marketplace/.

[28] M. Wu, R. C. Miller, and S. L. Garfinkel. Do secu-
rity toolbars actually prevent phishing attacks? In
Proceedings of the SIGCHI conference on Human
Factors in computing systems, CHI ’06, pages 601–
610, New York, NY, USA, 2006. ACM.

[29] M. Wu, R. C. Miller, and G. Little. Web wallet:
preventing phishing attacks by revealing user in-
tentions. In Proceedings of the second symposium
on Usable privacy and security, SOUPS ’06, pages
102–113, New York, NY, USA, 2006. ACM.

12

